RE: A Philosopher's Philosophy: Pride on the balance.
[English below, as originally written in German]
Sobald du die richtige Formel und Vorgehensweise kennst, führst du die Berechnung durch und du erhältst die Antwort.
Das erscheint mir als eine sehr vereinfachte Beschreibung der Mathematik, und wenn du ein bisschen tiefer dringst und über die irrationalen Zahlen nachdenkst, wird dir vielleicht auffallen, dass es viel mehr irrationale Zahlen gibt als rationale Zahlen. Ich weiß wohl, dass es unendlich viele rationale Zahlen gibt, aber diese sind abzählbar, das heißt, die gesamte Menge kann auf die Menge der sogeannten natürlichen Zahlen abgebildet werden. Dies gilt jedoch nicht für die irrationalen Zahlen, diese sind über-abzählbar. Weiterhin kann auffallen, dass jede einzelne irrationale Zahl merkwürdig ins Endlose strebt, dass sie "auszuweichen" scheint, wenn man sie genau fassen will. Das ist sehr befremdlich, wenn man zum Beispiel daran denkt, dass Wurzel aus Zwei die exakte Länge der Diagonalen eines Quadrates ist mit der Seitenlänge 1. Die Diagonale ist sichtbar da, und ihre Länge ist beliebig genau anzugeben - aber nicht vollkommen genau. Auf der anderen Seite kannst du ein Quadrat nehmen, dessen Diagonale du ganz genau kennst, zum Beispiel 2. Dann sind aber die Seiten irrational und nicht mehr vollkommen genau anzugeben (nämlich Wurzel aus zwei in diesem Fall).
Das gesagt, springe ich zu Paulus, auf den du verwiesen hast: Wissen bläht auf, aber Liebe baut auf. Was hat er damit sagen wollen, und weshalb hast du darauf verwiesen?
Ich schließe mit meiner Meinung, dass Selbstwertschätzung nicht die MItte oder Balance ist zwischen Stolz und Bescheidenheit, sondern dass Bescheidenheit und Selbstwertschätzung Geschwister sind, oder - wenn du willst - zwei Seiten derselben Medaille. Sie gehen Hand in Hand (oder bilden als Medaille ein Ganzes) und weisen den Stolz zurück. Sie wissen, dass Wissen aufbläht, weil es immer unvollkommen bleibt und sich aber recht gern für vollkommen hält. Sie hoffen, dass sie die Grenzen ihres Wissens stets im Gedächtnis behalten, dass alles Wissbare nur ein winziger Teil ist der Welt und des Lebens, und sie glauben, dass sie eigentlich nichts wissen als nur dies eine: im Grunde zu wenig zu wissen, gemessen an der Gesamtheit des möglichen Wissens eigentlich nichts zu wissen. Und sie suchen daher immer wieder die Stellen, an denen sie spüren können, wie wenig sie wissen. Das Kinn bleibt gesenkt, denn das Leben ist ein Wagnis, für das es keine Formel gibt.
Once you know the correct formula and procedure, perform the calculation and you will get the answer.
This seems to me to be a very simplified description of mathematics, and if you delve a little deeper and think about irrational numbers, you may notice that there are many more irrational numbers than rational numbers. I know that there are infinitely many rational numbers, but these are countable, which means that the entire set can be mapped to the set of so-called natural numbers. However, this does not apply to irrational numbers, which are uncountable. Furthermore, it may be noticeable that each individual irrational number strangely strives towards infinity, that it seems to ‘evade’ when one tries to grasp it precisely. This is very strange when you consider, for example, that the square root of two is the exact length of the diagonal of a square with a side length of 1. The diagonal is visibly there, and its length can be specified with any degree of accuracy – but not completely accurately. On the other hand, you can take a square whose diagonal you know exactly, for example 2. But then the sides are irrational and can no longer be specified with complete accuracy (namely the square root of two in this case).
That said, I'll jump to Paul, whom you referred to: Knowledge puffs up, but love builds up. What did he mean by that, and why did you refer to it?
I conclude with my opinion that self-esteem is not the middle ground or balance between pride and modesty, but that modesty and self-esteem are siblings, or – if you like – two sides of the same coin. They go hand in hand (or form a whole as a coin) and reject pride. They know that knowledge inflates because it always remains imperfect and yet likes to think of itself as perfect. They hope to always keep the limits of their knowledge in mind, that everything that can be known is only a tiny part of the world and of life, and they believe that they actually know nothing but this one thing: that they know too little, measured against the totality of possible knowledge, that they actually know nothing. And so they constantly seek out places where they can feel how little they know. Their chin remains lowered, because life is a risk for which there is no formula.
Translated with DeepL.com (free version) - proofread by me